Q1) State the assumption of kinetic theory of gases
a) A gas consists of a very large number of extremely small molecules.
b) The molecules are rigid and perfectly elastic spheres of very small diameters.
c) All the molecules of the same gas are identical.
d) The actual volume occupied by the molecules is very small compared to the volume of the gas.
e) The intermolecular forces of attraction between gas molecules are negligible.
f) The molecules are always in a state of random motion.
g) Due to random motion, the molecules constantly collide with each other and with the walls of the container. This exerts pressure on the walls of the container.
h)The collisions are perfectly elastic, i.e. there is no loss of kinetic energy during collisions.
i) Between two successive collisions, a molecules travels in a straight line with a constant velocity.
j) The time of impact is very small compared to the time interval between the successive collisions.
k) At constant temperature, the averages kinetic energy of the gas molecules remains constant.

Q2) Define : (1) Mean free path (2) Root mean square velocity (3) Mean velocity
(1) Mean free path : It is defined as the average distance covered by a molecule between two successive collisions.
If S is the total distance covered by a molecules during which it has suffered N number of collisions, the mean free path $=\mathrm{S} / \mathrm{N}$
(2) Root mean square velocity : It is defined as the square root of the mean of the squares of the velocities of individual molecules.

$$
\overline{\mathrm{C}}_{\mathrm{mus}}=\sqrt{\frac{\mathrm{C}_{1}^{2}+\mathrm{C}_{2}^{2}+\ldots \ldots \ldots+\mathrm{C}_{3}^{2}}{\mathrm{~N}}}
$$

(3) Mean velocity : It is the average of velocities of the gas molecules.

$$
\mathrm{C}=\frac{\mathrm{C}_{1}+\mathrm{C}_{2}+\ldots \ldots+. \mathrm{C}_{N}}{\mathrm{~N}}
$$

(Q3) On the basis of kinetic theory of gases, obtgin an expression for the pressure exerted by a gas

Consider an ideal gas, which is enclosed in a cubical container having each side of length Consi
L.
Let.
$\mathrm{m}=$ the mass of each molecule, $\mathrm{N}=$ the number of molecules of the gas
$M=$ the total mass of the gas $=m \mathrm{~N}$
$A=$ the area of each face of the cube $=L^{2} \quad, \rho=$ the density of the gas $=\left(\frac{M}{V}\right)$
The molecules of the gas are moving in all possible directions with all possible velocities.
Let $C_{1}, C_{2}, C_{3}, \ldots C_{N}$ be the velocities of the molecules. Let $\left(u_{1}, v_{1}, w_{1}\right),\left(u_{2}, v_{2}, w_{2}\right)$,
$\left(u_{3}, v_{3}, w_{3}\right) \ldots\left(u_{N}, v_{N}, w_{N}\right)$ respectively be the X, Y. and Z components of their velocities.
Let us consider a molecule having velocity C_{1}. Then, $C_{1}^{2}=u_{1}^{2}+v_{1}^{2}+w_{1}^{2}$
Consider the motion the above molecule along X axis.
Its momentum before collision with the wall $A B C D=m u_{1}$.
Its momentum after the collision is $=-\mathrm{m} \mathrm{u}_{1}$. (elastic collision)
So change in its momentum $=($ final momentum $)-($ initial momentum $)=-2 m u_{1}$
\therefore Momentum imparted to the wall $\mathrm{ABCD}=+2 \mathrm{mu}_{1}$
The molecule now travels with velocity $-u_{1}$ and collides with the wall EFGO.
Between two successive collisions with the same surface, the molecules cover a distance
2 L . Hence in 1 sec , the number of collisions of the molecule with the surface ABCD is $\frac{u_{1}}{2 L}$
\therefore Total momentum imparted to $=($ Change in momentum $) \times($ Number of collisions $)$ the wall ABCDin one sec. in 1 collision per second \therefore Rate of change of momentum of the wall $A B C D=\left(2 m u_{1}\right) \times\left(\frac{u_{1}}{2 L}\right)=\frac{m u_{1}^{2}}{L}$
Total rate of change of the momentum $=\left(\frac{m u_{1}^{2}}{L}+\frac{m u_{2}^{2}}{L}+\ldots \ldots .+\frac{m u_{N}^{2}}{L}\right)$
due to all the molecules along X -axis

Accorang to Newton's second law of motion this is nothing but a force exerted by the molecules on the wall $A B C D$ and EFGO.

$$
\therefore F_{x}=\sum_{i=1}^{N} \frac{m u_{i}^{2}}{L}
$$

\therefore Pressure exerted by molecules on each wall perpendicular to X - axis is.

$$
P_{x}=\frac{F_{x}}{L^{2}}=\sum_{i=1}^{N} \frac{m u_{i}^{2}}{L^{3}}
$$

Similarly, pressure along Y -axis and Z - axis are,

$$
P_{y}=\frac{F}{L^{2}}=\sum_{i=1}^{N} \frac{m v_{i}^{2}}{L^{3}} \quad \text { and } \quad P_{z}=\frac{F_{z}}{L^{2}}=\sum_{i=1}^{N} \frac{m w_{i}^{2}}{L^{3}}
$$

As molecules are free to move in all possible directions, $P_{x}=P_{y}=P_{z}=P$

$$
\begin{aligned}
& \therefore P=\frac{1}{3}\left(P_{x}+P_{y}+P_{z}\right) \\
& \text { or } \quad \begin{aligned}
& P=\frac{1}{3} \frac{m}{L^{3}} \sum_{i=1}^{N}\left(u_{i}^{2}+v_{i}^{2}+w_{i}^{2}\right) \\
&{\text { But } C_{1}^{2}=u_{1}^{2}+v_{1}^{2}+w_{1}^{2}, C_{2}^{2}}^{2}=u_{2}^{2}+v_{2}^{2}+w_{2}^{2}, \ldots, C_{N}^{2}=u_{N}^{2}+v_{N}^{2}+w_{N}^{2} \\
& \text { or } \quad P=\frac{1}{3} \frac{m}{L^{3}} \sum_{i=1}^{N} C_{i}^{2}=\frac{1}{3} \frac{m N}{L^{3}} \sum_{i=1}^{N} \frac{C_{i}^{2}}{N^{\prime}}
\end{aligned}
\end{aligned}
$$

But $\sum_{i=1}^{N} \frac{C_{i}^{2}}{N}=\bar{C}^{2}=$ mean square velocity of gas molecule and L^{3} is the volume V.

$$
\therefore \quad \mathrm{P}=\frac{1}{3} \frac{\mathrm{mN}}{\mathrm{~V}} \overline{\mathrm{C}}^{2} \text { or } \mathrm{P}=\frac{1}{3} \frac{\mathrm{M}}{\mathrm{~V}} \overline{\mathrm{C}}^{2} \text { or } \mathrm{P}=\frac{1}{3} \rho \overline{\mathrm{C}}^{2}
$$

Where $M=$ total mass and $\rho=$ density of the gas.
Q4) Derive Boyle's law on the basis of kinetic theory of gases .

Statement : At constant temperature, the pressure exerted by a given mass of an enclosed ideal gas is inversely proportional to its volume.

$$
P \propto \frac{1}{V} \text { or } P V=\text { constant }
$$

According to kinetic theory of gases,

$$
\mathrm{P}=\frac{1^{\mathrm{Nm} \overline{\mathrm{C}}^{2}}}{3 \mathrm{~V}}
$$

$\mathrm{N}=$ Number of molecules $\mathrm{m}=$ mass of each molecule,
$\overline{\mathrm{C}}^{2}=$ mean square velocity. $\mathrm{V}=$ volume

$$
P V=\frac{1}{3} N m \overline{\mathrm{C}}^{2}=\frac{2}{3} \frac{\mathrm{Nm} \overline{\mathrm{C}}^{2}}{2}
$$

But $\frac{m \bar{C}^{2}}{2}$

$$
P V=\frac{2}{3} N(\text { K.E. of a molecule })
$$

According to the assumption of the kinetic theory of gases, at a constant temperature average kinetic energy of a gas molecule is constant.
Thus, for a given mass of a gas, $\mathrm{PV}=$ constant. Thus, Boyle's law is proved.

Consider an ideal gas enclosed in a cylinder having volume V. Let M be it total mass and $\overline{\mathrm{C}}^{2}$ be the mean square velocity of its molecule. Then, the pressure exerted by the gas is given by $\quad \mathrm{P}=\frac{1 \mathrm{M} \overline{\mathrm{C}}^{2}}{3 \mathrm{~V}}$

$$
\begin{aligned}
\therefore \quad & M \overline{\mathrm{C}}^{2}=3 \mathrm{PV} \text { or } \frac{\mathrm{M} \overline{\mathrm{C}}^{2}}{2}=\frac{3 \mathrm{PV}}{2} \\
\text { But } \quad \frac{\mathrm{M} \overline{\mathrm{C}}^{2}}{2}= & \text { kinetic energy of the gas }=\frac{3 \mathrm{PV}}{2} \\
& \text { Kinetic energy per unit volume }=\frac{3 P}{2}
\end{aligned}
$$

Q6) Obtain an expression for kinetic energy per unit mole.
Consider one mole of an ideal gas enclosed in a cylinder of volume V. Let M be it total mass and $\overline{\mathrm{C}}^{2}$ be the mean square velocity of its molecule. Then, the pressure exerted by

$$
\begin{aligned}
& \text { the gas is given by } \quad P=\frac{1 M \overline{\mathrm{C}}^{2}}{3} \mathrm{~V} \\
& \mathrm{MC}^{2}=3 \mathrm{PV} \text { or } \frac{\mathrm{M}^{2}}{2}=\frac{3 \mathrm{PV}}{2}
\end{aligned}
$$

But $P V=R T$ for 1 mole of gas, and $\frac{M \bar{C}^{2}}{2}=$ kinetic energy of the gas
Kinetic energy per unit mole of gas $=\frac{3 \mathrm{RT}}{2}$

$$
\text { (Note : Kinetic energy per molecule }=\frac{3 \mathrm{RT}}{2 \mathrm{~N}_{\Lambda}}=\frac{3 \mathrm{KT}}{2}
$$

where $\mathrm{K}=$ Boltzmann's constant $=\frac{\mathrm{R}}{\mathrm{N}_{A}}, \mathrm{~N}_{A}=$ Avagadro's number)
kinetic energy per unit mass $=\frac{3 \mathrm{RT}}{2 \mathrm{M}_{\mathrm{w}}} \quad, \mathrm{M}_{\mathrm{w}}=$ molecular wt.

Q7) Show that the R.M.S. velocity of the gas molecules is directly proportional to

 the square root of its absolute temperature.Consider one mole of an ideal gas enclosed in a cylinder of volume V . Let M be it total mass and $\overline{\mathrm{C}}^{2}$ be the mean square velocity of its molecule. Then, the pressure exerted by
the gas is given by

$$
\begin{aligned}
& \mathrm{P}=\frac{1}{3} \frac{\mathrm{M} \overline{\mathrm{C}}^{2}}{\mathrm{~V}} \\
& \overline{\mathrm{C}}^{2}=\frac{3 \mathrm{PV}}{\mathrm{M}}
\end{aligned}
$$

$$
\backsim
$$

But $\mathrm{PV}=\mathrm{nRT}$ for n mole of a gas,

$$
\mathrm{C}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{nRT}}{\mathrm{M}}}
$$

But

First law of thermodynamics : If a thermodynamic system absorbs a quantity of heat dQ as a result of which its internal energy is increased by dU and it does an amount of external work dW . then $\mathbf{d Q}=\mathbf{d U}+\mathbf{d W} \ldots .$. (1)
But $d Q$ is in heat unit while $d U$ and $d W$ are in work unit, then equation (1) can be written as $d Q=\frac{d U+d W}{J}$, where $J=$ mechanical equivalent of heat $=4185.5 \frac{\mathrm{~J}}{\mathrm{Kcal}}$

Q10) Define principal and molar specific heat of a gas at constant pressure and at constant volume.

Principle specific heat at constant volume is defines as the quantity of heat required to raise the temperature of unit mass of a gas through $1^{\circ} \mathrm{C}$ or $1^{\circ} \mathrm{K}$ at constant volume. It is denoted by c_{v} and its unit is keal $/ \mathrm{kg} / 1^{\circ} \mathrm{K}$

Principle specific heat at constant pressure is defined as the quantity of heat required to raise the temperature of unit mass of a gas through $1^{\circ} \mathrm{C}$ or $1^{\circ} \mathrm{K}$ at constant pressure. It is denoted by c_{p} and its unit keal/ $\mathrm{kg} / 1^{\circ} \mathrm{K}$.

Molar specific heat at constant volume is defined as the quantity of heat required to raise the temperature of one mole (express in kg) of a gas through $1^{\circ} \mathrm{C}$ or $1^{\circ} \mathrm{K}$ at constant volume. It is denoted by $\mathbf{C}_{\mathbf{v}}$ and its unit is kcal/ kmole $/ 1^{\circ} \mathrm{K}$

Molar specific heat at constant pressure is defined as the quantity of heat required to raise the temperature of one mole (express in kg) of a gas through $1^{\circ} \mathrm{C}$ or $1^{\circ} \mathrm{K}$ at constant pressure. It is denoted by $\mathrm{C}_{\boldsymbol{n}}$ and its unit kcal $/ \mathrm{kmole} / 1^{\circ} \mathrm{K}$

$$
\text { Q11) Why is } c_{p}>c_{v} \text { ? (2) }
$$

When a given mass of heated at a constant volume then the entire heat supplied is used to raise the kinetic the energy of the gas molecules which also called internal energy of a gas dU . As a result its temperature also rises by dT .

$$
d Q_{v}=d U=m c_{v} d T \ldots(1)
$$

When the same gas is heated at constant pressure so that its temperature rises by same amount dT then the heat supplied is used for

1) to increase its heated energy (dU) which is same as (dQ) and
2) to do work against external pressure while pushing the piston up (dW)

Let $\rightarrow \mathrm{L}=$ Total latent heat, $\mathrm{L}_{\mathrm{i}}=$ internal latent heat, $\mathrm{L}_{\mathrm{e}}=$ external latent heat
$\mathrm{L}=\mathrm{L}_{\mathrm{i}}+\mathrm{L}_{\mathrm{c}}$
But $\mathrm{L}_{\mathrm{e}}=\mathrm{P} d V$. where $\mathrm{P}=$ external pressure and $\mathrm{dV}=$ increase in the volume

$$
L=L_{i}+P d V \text { or } L=L_{i}+\frac{P d V}{J}
$$

Definition:

(a) Internal latent heat: It is the amount of heat absorbed by unit mass of the substance to do work against intermolecular forces of attraction during the change of state without change in temperature.
(b) External latent heat: It is the amount of heat absorbed by the unit mass of the substance to do work against the external pressure during the change of state without change in temperature.

Degree of Freedom
The total number of independent ways in which the particle of a system can take up energy.
d.f. $=3 \mathrm{~N}-\mathrm{k}$

Monoatomic : $\mathrm{N}=1$; $\mathrm{k}=0$; d.f. $=3$
Diatomic: $\mathrm{N}=2$; $\mathrm{k}=1$; d.f. $=5$
Triatomic : $\mathbf{N}=\mathbf{3} ; \mathbf{k}=\mathbf{3}$; d.f. $=6$ (triangular)

$$
N=3 ; k=2 \text {; d.f. }=7 \text { (linear) }
$$

Law of Equipartition of Energy

Any dynamical system in thermal equilibrium, the energy is equally distributed among its various d.f's and energy associated with each d.f. is $1 / 2 k$. T
Proof: K.E./molecule $=1 / 2 \mathrm{mc}^{2}=3 / 2$ k.T
$1 / 2 m\left(c_{x}{ }^{2}+c_{y}{ }^{2}+c_{z}^{2}\right)=3 / 2$ k. T
$1 / 2 m c_{x}{ }^{2}+1 / 2 m c_{y}^{2}+1 / 2 m c_{z}^{2}=3 / 2$ k.T
$\mathrm{KEx} / \mathrm{molecule}+\mathrm{KEy} / \mathrm{molecule}+\mathrm{KEz} /$ molecule $=3 / 2 \mathrm{k} . \mathrm{T}$
But, KEx $=K E y=K E z$ (due to random motion)
K.E.x / molecule + Key /molecule + KEz /molecule = 1/2k.T

Cp, Cv, v for Mono, Di, Tri, Poly atomic
Monoatomic: d.f.= 3
Total Internal Energy per mole (U) = d.f. (KE/molecule) x N_{A}

$$
=3(1 / 2 k T) N_{A}
$$

$$
=3 / 2 \mathrm{RT}
$$

$C v=d U / d T=3 / 2 R ; C p=C v+R=5 / 2 R ; \quad Y=C p / C v=5 / 3=1.67$

Diatomic: d.f.= 5
Total Internal Energy per mole (U) = d.f. (KE/molecule) $\times N_{A}$

$$
=5(1 / 2 k T) N_{A}
$$

$$
=5 / 2 R T
$$

$C v=d U / d T=5 / 2 R ; C p=C v+R=7 / 2 R ; \gamma=C p / C v=7 / 5=1.4$

Triatomic: d.f. 6 (triangular)
Total Internal Energy per mole (U) = d.f. (KE/molecule) $\times \mathrm{N}_{\mathrm{A}}$ $=6(1 / 2 k T) N_{A}$ = 3 RT
$C v=d U / d T=3 R ; C p=C v+R=4 R ; \quad \gamma=C p / C v=4 / 3=1.33$

Triatomic: d.f.= 7 (Linear)
Total Internal Energy per mole (U) = d.f. (KE/molecule) x N_{A} $=7(1 / 2 k T) N_{A}$ $=7 / 2 R T$
$C v=d U / d T=7 / 2 R ; C p=C v+R=9 / 2 R ; \gamma=C p / C v=9 / 7=1.28$

Polyatomic: d.f. $=\mathrm{f}$
Total Internal Energy per mole (U) = d.f. (KE/molecule) x N_{A} $=f(1 / 2 k T) N_{A}$ $=f / 2 R T$
$C v=d U / d T=f / 2 R ; C p=C v+R=(f / 2+1) R ; \gamma=C p / C v=1+2 / f$

Dalton's Law of Partial Pressures

The resultant pressure exerted by a mixture of gasses or vapours which do not interact in any way is equal to sum of their individual pressures.
$\mathbf{P}=\mathbf{P}_{\mathbf{1}}+\mathbf{P}_{\mathbf{2}}+\ldots \ldots$.
$P=1 / 3 \rho_{1} c_{1}{ }^{2}+1 / 3 \rho_{2} c_{2}{ }^{2}+\ldots \ldots$.

REFER TEXBOOK FOR MAXWELL DISTRIBUTION, zeroth law, second law of Thermodynamics, heat engine, refrigerator

